Multiple polylogarithm values at roots of unity
نویسندگان
چکیده
For any positive integer N let μN be the group of the N th roots of unity. In this note we shall study the Q-linear relations among the values of multiple polylogarithms evaluated at μN . We show that the standard relations considered by Racinet do not provide all the possible relations in the following cases: (i) level N = 4, weight w = 3 or 4, and (ii) w = 2, 7 <N < 50, and N is a power of 2 or 3, or N has at least two prime factors. We further find some (presumably all) of the missing relations in (i) by using the octahedral symmetry of P1 − ({0,∞}∪μ4). We also prove some other results when N = p or N = p2 (p prime 5) by using the motivic fundamental group of P1 − ({0,∞}∪μN). To cite this article: J. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Valeurs de polylogarithmes multiples en des racines de l’unité. Soient N un entier positif et μN le groupe des racines N ièmes de l’unité. Nous étudions les relations Q-linéaires entre les valeurs de polylogarithmes multiples évalués en ces racines de l’unité. Nous montrons que les relations standard considérées par Racinet ne fournissent pas toutes les relations dans les cas suivants : (i) N = 4, poids w = 3 ou 4, et (ii) w = 2, 7 <N < 50, et N est une puissance de 2 ou 3, ou N a au moins deux facteurs premiers. Dans le cas (i), nous trouvons des (sans doute, toutes les) relations manquantes à l’aide de la symétrie octaédrale de P1 − ({0,∞}∪μ4). Utilisant le groupe fondamental motivique de P1 − ({0,∞} ∪μN), nous obtenons des résultats additionnels quand N = p ou N = p2 (p premier 5). Pour citer cet article : J. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
منابع مشابه
Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six
We evaluate multiple polylogarithm values at sixth roots of unity up to weight six, i.e. of the form G(a1, . . . , aw; 1) where the indices ai are equal to zero or a sixth root of unity, with a1 6= 1. For w ≤ 6, we construct bases of the linear spaces generated by the real and imaginary parts of G(a1, . . . , aw; 1) and obtain a table for expressing them as linear combinations of the elements o...
متن کاملStandard Relations of Multiple Polylogarithm Values at Roots of Unity
Let N be a positive integer. In this paper we shall study the special values of multiple polylogarithms atNth roots of unity, called multiple polylogarithm values (MPVs) of levelN . These objects are generalizations of multiple zeta values and alternating Euler sums, which was studied by Euler, and more recently, many mathematicians and theoretical physicists.. Our primary goal in this paper is...
متن کاملSpecialization of the p - adic Polylogarithm to p - th Power Roots of Unity
The purpose of this paper is to calculate the restriction of the p-adic polylogarithm sheaf to p-th power torsion points. 2000 Mathematics Subject Classification: 14F30,14G20
متن کاملThe Generalized-Euler-Constant Function γ(z) and a Generalization of Somos’s Quadratic Recurrence Constant
We define the generalized-Euler-constant function γ(z) = ∑∞ n=1 z n−1 ( 1 n − log n+1 n ) when |z| ≤ 1. Its values include both Euler’s constant γ = γ(1) and the “alternating Euler constant” log 4 π = γ(−1). We extend Euler’s two zeta-function series for γ to polylogarithm series for γ(z). Integrals for γ(z) provide its analytic continuation to C − [1,∞). We prove several other formulas for γ(z...
متن کاملDeutschen Mathematiker - Vereinigung Gegründet 1996 Band 15 · 2010
Let N be a positive integer. In this paper we shall study the special values of multiple polylogarithms at Nth roots of unity, called multiple polylogarithm values (MPVs) of level N . Our primary goal in this paper is to investigate the relations among the MPVs of the same weight and level by using the regularized double shuffle relations, regularized distribution relations, lifted versions of ...
متن کامل